Land Data Assimilation at NCEP/EMC

Michael Ek and Jesse Meng

Improving the Land Component in the next NCEP Reanalysis

- Upgraded Noah land surface model.
- Higher-resolution land data sets, i.e. vegetation, soils, vegetation phenology (near-realtime), etc.
- Improved forcing, especially precipitation.
- Land data assimilation (e.g. snow, soil moisture).
- Thorough land model spin-up and enhanced downscaling procedures.
- Include river routing to complete water cycle.
- Extends land-atmosphere coupling to include ocean.
- Test improved GLDAS in Climate Forecast System.

Global Land Data Assimilation System (GLDAS)

- **GLDAS** (runs Noah land surface model (LSM) under NASA/Land Information System (LIS) forced with CFSv2/GDAS atmospheric data assimilation output & "blended" precipitation in a semi-coupled mode.
- **Blended precipitation** via satellite (CPC/CMAP; heaviest weight in tropics--satellite observations more accurate & surface gauges sparse), gauge (heaviest in mid-latitudes where gauge density highest) & GDAS (modeled; high latitude--gauges sparse, satellite obs lack accuracy).
- **Snow** cycled in CFSv2/**GLDAS** if model within 0.5x to 2.0x observed value (IMS snow cover & AFWA snow depth products), else adjusted to 0.5 or 2.0 of observed value.

GLDAS Replay

Motivation	CFSR was executed in 6 streams Discontinuity at stream boundaries
Solution	Single-Stream GLDAS (1979-realtime)
Configuration	Same as CFSR (T382)
Forcing	CFSR surface forcing Blended precip forcing
Spin up	15 years

Soil Moisture Trends in CFSR Streams?

Single-Stream GLDAS2

CFSR vs GLDAS2 soil moisture anomaly CONUS Southwest and Southern Plain

Vegetation Types: SIB vs IGBP

12: cultivations (the same parameters as for type 7)

Soil Types: ZOBLER vs STASGO

120W

A Gauge-Satellite Blended Analysis of Daily Precipitation for Hydrometeorological Applications

- 0.25°lat/lon over the global land
- Daily analysis from 1979 to realtime
- Blending information from different sources to overcome shortcomings
- CPC daily gauge analysis adjusted to GPCC monthly gauge data to correct the under-estimation in daily reports
- OLR-based precipitation estimates derived through calibration against CMORPH
- Daily gauge data and OLR precip combined to produce a precipitation analysis with long-term homogeneity and quantitative accuracy
- Right figure: sample for Jul. 15,2010

CPC Gauge-OLR Blended Precip

GrADS: CDLA/IGES 2015-04-24-16:12

NLDAS Routed Daily Streamflow Anomaly

Improving the Land Surface Component in the next NCEP Reanalysis

 An improved GLDAS, with upgraded Noah land model, will *Improve Connection between Reanalysis* System Components: land, atmosphere & ocean, with extension to an upgraded Climate Forecast System.